
Reaport 89-al Report898US Army Corps

of Engineers
Cold Regions Research &AD-A208 945 Engineering Laboratory

QuickDraw data structures for image processing

Perry J. LaPotin and Harlan L. McKim

S ELECTE,

JUNI 3 19M93

OFFICE OF THE CHIEF OF ENGINEERS

Approv for puharesm;dfttuirtuli n Wdmltv 89 6 13 077

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

Unclassified
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE Approved for public release; distribution is

unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

Special Report 89-8

60. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
U.S. Army Cold Regions Research (if applicable)
and Engineering Laboratory CECRL Office of the Chief of Engineers

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State. and ZIP Code)

72 Lyme Road
Hanover, N. H. 03755-1290 Washington, D.C. 20314

8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. 4A762730 NO. ACCESSION NO.

6.27.30A AT42 CS 022
1 CWIS 32297

11. TITLE (Include Security Classification)

QuickDraw Data Structures for Image Processing

12. PERSONAL AUTHOR(S)

LaPotin, Perry J. and McKim, Harlan L.
13a. TYPE OF REPORT 13b. TIME COVERED 114. DATE OF REPORT (Year, Month. Day) 15. PAGE COUNT

FROM _ TO j April 1989 20
16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP Data structures Parallel data structures
Geographical information systems Parallel distributed processing

1 SImage processing QuickDraw data structures
\19. ABSTRACT (Continue on reverse if necessary and identify by block number)

- Standard binary data formats are currently used to import and export satellite images to geographic information- and
image-processing systems. These data structures provide a standard sequential method to read and write large volumes
of information in a semicompressed format. While the binary structure is adequate for strict import and export of image
data, it is poorly adapted to fast image-processing at the microcomputer level. In this study, new data structures are
investigated that use operating codes to quickly convert raster binary image data and vector overlay files into a high-
speed graphical language for efficient display and processing. Binary data is converted into "picture handles" of variable
size and resolution using 2-byte operating codes to symbolize the graphical process. As a result, images are drawn as
objects that may be coupled as independent vector components in multiple bit planes. The bit planes may be specified
for each pixel to support 24- and 32-bit color of both raster and vector data. The efficiency of these structures allows
the user to display 1024 x 1024 scenes in multiple overlapping windows using simple Cut/Copy/Paste commands. In
addition, the use of operating codes allows an analyst to quickly store and retrieve archived images in their compressed
form using simple scrap manage techniques. Early results for this technique indicate that converted vector overlays
may be compress by a factor of 8 bd SPOT images (depending on scene diversity) by a factor of 2. More significantly,
images that typic y require 4 mi to load from binary may be displayed in fractions of a second using the new display

20. DISTRIBUTION/AVAILABIL TY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
M UNCLASSIFIED/UNU MED Q3 SAME AS RPT. 0 DTIC USERS Unclassified

22a. NAME OF RESPONSIBLE IODIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL
Harlan McKim 603-646-4100 CECRL-RE

DD FORM 1473, 84 M4 83 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE'I, / % ~ AI other editions are obsolete./,/ UNCLASSIFIED

19. Abstract (cont'd). method and resultant operating codes. In its present furm, the software provides a gateway for users

of image data to display multiple bands of information quicVy, and to vary hue, saturation, brightness, and resolution

levels on the microcomputer. New utilities will include imageexport into the PNTG, PHCA, EPS, and TIFF formats for

export compatibility with Postscript page-layout software and video image-processing systems.

ii

PREFACE

This report was prepared by Dr. Perry J. LaPotin, of the Department of Physics and
Astronomy, Dartmouth College, Hanover, New Hampshire, and Dr. Harlan L. McKim,
Project Manager, USACE Civil Works Remote Sensing Program. Funding for this work
was provided under DA Project 4A762730AT42, Design, Construction, and Operations
Technology for Cold Regions, Task CS (Combat Support), Work Unit 022, Winter Battle-
field Terrain Sensors; and under Civil Works Project CWIS 32297, Demonstration of
Satellite Digital Data in Corps Planning, Engineering and Operations Activities.

The authors thank Timothy Pangburn, and Richard Haugen for their excellent review
of the manuscript, and Dr. Michael Masuch of the Department of Computer Science, Uni-
versity of Amsterdam, and Jos C. Glorie of the Department of Physics and Astronomy,
Dartmouth College, and the Department of Computer Science, University of Amster-
dam, for their technical evaluation and suggestions concerning the data structures. The
authors extend special thanks to Nancy LaPotin for her excellent review of the remote
sensing material.

The contents of this report are not to be used for advertising or promotional purposes.
Citation of brand names does not constitute an official endorsement or approval of the
use of such commercial products.

e AaeSsion For
S NTIS GRA&I

DTIC TAB
Unannounced 0
IJustifloatio

BYDist ribut ion/

Dist special

CONTENTS
Page

A b stra ct ..
P re fa ce ..
In trod u ction .. 1
M eth od 1
P icture fi les 4
R esu lts .. 7
C on clu sion s 7
L iteratu re cited .. 8
Appendix A: QuickDraw operating codes for converting binary image data into

PICT and PICT2 data files .. 9

ILLUSTRATIONS

Figure

1. RGB color GrafPorts under QuickDraw .. 2
2. RGB color format under QuickDraw ... 3
3. The picture handle data structure used to store and display images in both

raster and vector format ... 4
4. Memory must be allocated for the picture handle to receive the image and

provide the required space .. 4
5. PICT and PICT2 file format for import and export of picture data 4
6. A short procedure to read a specified amount of information into a data

pointer from a previously opened file ... 5
7. A procedure to spool picture data into a picture handle 5
8. A short procedure to write a specified amount of information from a data

pointer into a previously opened file .. 6
9. A procedure to write PICT2-style files from a picture handle and force the

required End of Picture marker ... 6

iv

QuickDraw Data Structures for Image Processing

PERRY J. LAPOTIN AND HARLAN L. MCKIM

INTRODUCTION defined in Figure 1 and a detailed description
may be found in Inside Macintosh (1985).

Import and export formats for both Landsat GrafPorts that contain pixel maps may be quickly
and SPOT imagery are widely supported within converted to their vector equivalent using stan-
the image-processing/remote-sensingcommunity dard picture data structures and "off-the-shelf"
(Holkenbrink 1978. SPO7 ; ".,age 1983). These bit transfer routines.
formats provide a standard tai. -tat for the flow of
information between various hosts, but are poorly
suited to fast image-processing at the microcom- METHOD
puter level (Cohen and Grossberg 1983, Winston
1984, Rumelhart and Zipser 1985, McClelland All image data is sequential, so they may be
and Rumelhart 1987). handled in a systematic manner depending on

In this study, a new graphically dependent the specific input format (e.g. BSQ, BIL, BIP,
method for converting binary information into BIPP). Binary data are converted to a picture
QuickDraw1 operating codes is investigated. The handle by first "spooling-in" the information as a
technique converts pixels of variable gray scale raster image to either an on-screen (visible to the
(usually 0-255) into scaled RGB intensities. The user) or off-screen (invisible to the user) pixel
scaled intensities are stored within a pixel map map. This is accomplished in the following
that contains information on the base address of manner.
where the information may be retrieved from 1. A pointer of dynamic size (or fixed to a
memory as well as information on the size, hori- segment size of the image) is created in memory
zontal and vertical resolution, and planar offsets to store the image bytes temporarily prior to
(for greater than 8-bit color). In the developed display. This image size dictates the number of
prototype, pictures are referredto bytheir handle segments needed to 1ead in the information.
in memory (pointers to master pointers that Since large scenes require large memory alloca-
point to the picture data structure in memory). tion (e.g. 1024 x 1024 requires 1,048,576 bytes),
These handles may appear clumsy at first, but segments of variable size (e.g. 32,000 bytes) are
they are needed to quickly pull large volumes of used and the memory is ;reed after each read-in
information from memory in the image display sequence. This implies that segment pointers are
process. Furthermore, it will become apparent either disposed of or re-ind .xed (to the beginning
that they are needed for the design of efficient using ordinal operators) following each segment
and dynamic data structures to display, overlay, read.
and analyze large scenes in multiple windows 2. After reading in a segment, the binary
(GrafPorts). GrafPorts are the "logical paper" (represented in character form) for each pixel in
required to display images in windows, dialogs, the segment is converted to its ordinal value in
and on most output devices. The data structure is the 0-255 range. The ordinal values are used to

create a color range for display of the information
into the GrafPort.

3. Each pixel in the 0-255 range is converted
QuickDraw is the graphical operating language for the to the RGB color range specified by QuickDraw.

Apple Macintosh. This paper assumes that the reader is Therefore, each pixel in the 0-255 range requires
familiar with structured programming techniques and has conversion to the RGB color format of Figure 2.
some familiarity with memory management methods. For
additional information on handles and QuickDraw refer to Note that RGB color is composed of separate red,
Inside Macintosh (1985). green, and blue intensities, and a color specifica-

CDialogPtr = CWindowPtr;
CWindowPtr = CGrafPtr;

CGrafPtr = ACGrafPort;
CGrafPort = RECORD

portPixMap: pixMapHandle;

END;

pixMapHandle = ApixMapPtr; handle to a pixel map)
pixMapPtr= ApixMap;
pixMap = RECORD

baseAddr: Ptr; pointer to pixels
rowBytes: INTEGER; (offset to next line I
Bounds: Rect; (encloses bitmap)
pmVersion: INTEGER; IpixMap version number)
packType: INTEGER; (defines packing format)
packSize: LONGINT; length of pixel data
hRes: Fixed; horiz. resolution (ppi)
vRes: Fixed; vert. resolution (ppi))
pixelType: INTEGER; (defines pixel type)
pixelSize: INT EGER; (no. of bits in pixel
cmpCount: INTEGER; (no. of components in pixel
cmpSize: INTEGER; (no. of bits per component
planeBytes: LONGINT; (offset to next plane
pmTable: CTabHandle; Icolor table for this pixMap)
pmReserved: LONGINT; (for future use. MUST BE 0)

END;

Figure 1. RGB color GrafPorts under QuickDraw. Pixel maps to store information on
memory location (baseAddr), number of bytes per row (rowBytes), and the minimum rectangle
that bounds the image (Bounds). The remaining fields are used to specify packing formats,
resolution, bit planes, and indexes to color lookup tables (CLUTs.

tion table can be set up to determine equivalent range is chosen and expanded to the integer
RGB color for a particular index value. Since scale. Hue, saturation, and brightness may be
RGB color is composed of three separate fields, a changed independent of the RGB color selection.
single band of the image data can be"loaded"into 4. Pixels in the segment (e.g. the block of
a single gun (e.g. only the red display) and viewed 32,000 bytes) are converted to their QuickDraw
in one color range. A false representation (of the RGB equivalents and are displayed within an on-
true color composite) can be created for a single screen or off-screen GrafPort. A GrafPort is the
band by loading the remaining two color fields basic data structure for storing, manipulating,
with index values derived from the single 0-255 and displaying information within a window
intensity. Conversely, three bands of informa- that may contain both horizontal and vertical
tion can be read to create a "true" false color scroll-bars. In the QuickDraw environment, both
composite. In either case, the 0-255 range needs dialogs and windows are pointers to GrafPorts
to be converted to the integer scale (-32676 to and are simply special versions of the basic data
32676) to achieve a full dynamic range of color, structure. Figure 1 shows thepixMap data struc-
For density slicing, a subrange of the 0-255 ture of the GrafPort using the Color QuickDraw

2

RGBColor = RECORD
red: INTEGER; I magnitude of red component)
green : INTEGER; (magnitude of green component)
blue: INTEGER; (magnitude of blue component)

END;

ColorSpec = RECORD
value : INTEGER; (index or other valueI
rgb : RGBColor; {true color)

END;

Figure 2. RGB color format under QuickDraw. Binary data are scaled to the
range of integers for separate red, green, and blue display.

environment. For the sake of clarity, only the dows and dialogs are attached to GrafPorts that
portPixMap data structure is shown in its en- hold the information needed to recreate the image
tirety. There are many fields within the color simply by pointing to necessary fields within the
GrafPort, ranging from device specifications to data structure. A procedure that just transfers
fore- and background color specifications. For ad- pixel bytes may be used to swap the image in and
ditional information, seeInside Macintosh (1987). out of memory quickly without reloading the

As previously mentioned, color windows scene or recalculating the RGB equivalent inten-
(CWindowPtr) and color dialogs (CDialogPtr) sities.
are simply equivalent to color GrafPorts 5. Once all segments for the image are con-
(CGrafPtr). The single field shown within the verted to their RGB equivalent in step 4 and the
color GrafPort structure is the port pixel map, pixel map is loaded with the image, it either
which contains all the specifications for the ras- remains within the CGra/Ptr data structure or it
ter form of the image data. To refer to this may be "spooled" into a picture to convert it to a
information, a handle (the pointer to a pointer, a vector equivalent. The vector equivalent for the
method called "double inflection") is used. The rasterized pixel map is simply a vector represen-
handle points to a "master pointer" that keeps tation of the raster block. This implies that con-
track of memory locations. 2 In this manner, win- version is just a conversion of data types and is

limited in the actual vectorization. More in-depth
vectorization, such as bezier curve tracing, can

2 One might consider the master pointer as a postman trying always be done after the initial raster-to-vector
to deliver your mail. The postman points to your house and conversion using off-the-shelf software, such as
its contents, and the post office points to the postman to give Digital Darkroom (1988) and Adobe88 (1988).
him the mail: The picture is a dynamic record of QuickDraw

PostOffice : APostman [a postoffice is a "A pointer operating codes (opcodes) 3 listed in Appendix A.
to the postman)

PostMan : A MyHouse Ithe postman is a pointer to The data structure is dynamic from wo perspec-
my house and its contents) tives:
MyHouse = RECORD Ifinally, my house contains - Its size is bounded only by available mem-
my items and specifications) ory

myCouch : SleeperType; * The structure is a handle and is thus a
myDog: HoundType; dynamic memory address.

END: Specifically, the data structure is defined in

Figure 3. The picture definition data consider all
The use of double inflection becomes important in an envi-
ronment where one click of the mouse switches between
windows (GrafPorts), and scrollbars pan information up and 3Variable-sized "action items" that trigger a drawing opera-
down and side to side instantaneously. Efficient data struc- tion. The codes are passed directly to an output device
tures, efficient memory address management, and master (screen, printer) for high-speed display, and are stored in
pointing are required (Forsyth and Rada 1986). compressed form within the PICT and PICT2 format.

3

picHandle = ApicPtr;
picPtr = APicture;
Picture = RECORD

picSize: INTEGER;
picFrame : Rect;

(then picture definition data-the Figure 3. The picture handle data structure used
EN D w opcodes) to store and display images in both raster andEND; vector format.

SPOTPict: = picHandle(NewHandle(Sizeof(Picture))); with
SPOTPict AA DO

BEGIN
picSize := Sizeof(Picture); (dynamic, so don't worry
picFrame := SPOTRect; (e.g. 1024 x 1024

Figure 4. Memory must be allocated for the picture handle to receive
the image and provide the required space. The Sizeof function creates
a new handle in memory and specifies a temporarypicture size. The real size
of the picture expands to fit the actual size of the image.

data to be in vector format and handle raster data structure with a 512-byte header. This as-
images as a special vector style. Therefore, im- sociation between picture handles and the Quick-
ages that were created as a series of arcs, lines, Draw import/export standard provides a quick
polygons, and other vector drawing- get stored as and efficient method for spooling large volumes
vector simply because they were created that of information into (and out of) a PICT2 data file.
way. Raster images (e.g. MacPaint) are stored as
raster using vector operations (e.g. a pixel is
simply a rectangle of unit size). PICTURE FILES

The data structure allows for the import of im-
agery simply by specifyingthe image size (picSize) Picture handles may be quickly converted to
and the minimum bounding rectangle that en- picture documents (alias MacDraw PICT) by
compasses the image (picFrame). Since the size of writing the information from the handle into an
the structure is dynamic, picSize can be dynami- open file. Figure 5 shows the basic construction
cally allocated to force-fit the image using the ofa PICT (black and white) and a PICT2 data file
Sizeof function (standard in Pascal and C). For (extended size and color).
example, ifSPOTPict is of typepicHandle in Fig- Segments of a data file that contain specific
ure 3, then a dynamic picture size may be allocat- information styles are called forks. Resource
ed using the expression SPOTPictAA. picSize: = forks typically contain the "raw" numerical in-
Sizeof (Picture). In practice, however, memory formation necessary for the graphical procedure
must be allocated to all assignments for the pic- (e.g. the bits necessary to draw an icon or the
ture handle using the NewHandle operator (Fig. specification necessary to show a dialog box).
4). For the PICT2 format, only the data fork con-

In sum, picture handles are used to swap tains any information and the resource fork is
imagery quickly in and out of memory for fast empty. Within the data fork, the format of the
image display. Since each picture handle contains file is sequential of the form: 1) a 512-byte
the opcodes that were used to create it, no in- header, 2) the picture size in bytes, 3) a mini-
formation is lost from the original binary data. mum bounding rectangle, 4) the opcodes, and 5)
The PICT2 format for import and export of im- an End of Picture Marker = $OOFF.
agery is simply an extension of the picture handle To import imagery from an open picture file,

4

a spooling routine is used to handle the header
PICT2file and read the opcodes into a previously allocated

(type=PICT) picture handle. An outline of this method is
provided in Figures 6 and 7. Figure 6 is a short

Data Fork Resource Fork procedure that simply reads in information from
........- a previously open file whose reference number is

512-byte the variable Refnum. In Figure 7, this procedure
header is used as a graphical procedure to spool in the

picSize information from the file.
Images are exported from a picture handle in

picFrame the reverse manner from how they were read into
the picture handle. Figures 8 and 9 give ex-

opcode amples of this process using the procedure
This fork PutPICTData as the graphical procedure for the

picture data is empty write process, and the function WriteInage to
in PICT write the image from the picture handle (thePict)
files into a PICT2 file whose reference number is

RefNum.
In sum, the PICT2 data file is a simple exten-

opcode sion of the picture handle data structure pro-
vided in Figure 3. It represents a powerful data

picture data format for processing large volumes of informa-

EndOfPicture tion from files that are flexible both in size and in
..... data structure (raster and vector). In addition,

the format is recognized as a standard for the im-
Figure 5. PICT and PICT2 file format for port and export of graphical information to other
import and export of picture data. image-processing software.

PROCEDURE GetPictData (dataPtr : Ptr; byteCount : longint);
VAR

longCount: LONGINT;
ReadErr: OSErr;

BEGIN

longCount:= byteCount;
ReadErr := FSRead(RefNum, longCount, dataPtr);
(no readErr handling here...)

END;IGetPictData)

Figure 6. A short procedure to read a specified amount of information
(byteCount) into a data pointer (dataPtr) from a previously opened
file (RefNum).

5

FUNCTION ReadPICT; ((RefNumn INTEGER; aWindow: WindowPtr) : boolean;1)
CONST

PICThead = 512; (512 bytes to start things off)
VAR

ReadErr: OSErr;
Count: LONGINT;
thePict: picHandle;
myReadProcs: cqdProcs;

BGNMaxAppiZone;

ReadErr := SetFPos(RefNuni, fsFromStart, 0);()
SetStdCProcs(myReadProcs);{I)
aWindoWA.grafl~rocs := @myReadProcs;()
myReadProcs.putPicProc := @GetPICTData;()

(for now, skip the header and read the size of the picture field; we can discard this since
the bounds of the picture frame are actually used to determine the number of bytes to
be read into the picture handle...)

ReadErr: = SetFPos(RefNum, fsFromStart, PIOThead);
(create room in memory for the new picture)

thePict := picHandle(NewHandle(Sizeof(Picture))); I1
Count := Sizeof(Picture);

IF (FSRead(RefNum, Count, Ptr(thePi _tA)) =noErr) THEN()
BEGIN

ReadErr := SetFPos(RefNum, fsFromStart, PICThead);
Count := thePiCtAA.picSize;

IF (FSRead(RefNuni, Count, PtrftheFicV')) = noErr)
THEN ReadPICT := true

ELSE (handle the bad read and the bad news...)

EN;ReadPICT := false;

aWindoWA.grafProcs := NIL;()
ReadErr := FSClose(RefNum);

END;lReadPICT)

Figure 7. A procedure to spool picture data into a picture handle (thePict). The procedure uses GetPICTData
(Fig. 6) as a graphical procedure and FSRead (Inside Macintosh 1987) to read in the basic data (operating codes).

PROCEDURE PutPICTData (dataPtr: Ptr; byteCount: integer);
VAR

WriteErr: OSErr;
longCount: LONGINT;

BEGIN
longCount := byteCount;
WriteErr : = FSWrite(RefNum, longCount, dataPtr); H

(handle errors in WriteImage)
END;(PutPICTDatal

Figure 8.-A short procedure to write a specified amount of information
(byteCount) from a data pointer (dataPtr) into a previously opened file
(RetNum).

6

FUNCTION WriteImage (RefNum :integer): OSErr;
CONST

PIOThead = 512; (512 bytes to start things off)
PIOTtail =2;

ITYPE
DiskBlk PACKED ARRAY!I1..BlokSizel OF qdByte;

VAR
WriteErr: OSErr;
dstBuf : DiskBlk;
Count: LONGINT;
thePict: PicHandle;
myProcs : cqdProcs;
TailBik : ARRAY~i..PICTtaill OF Byte;

BEGIN
WriteErr := SetFPos(RefNum, fsFromStart, 0);
SetStdCProcs(myProcs);
aWindowA.grafProcs := @myProcs;
myProcs.putlicProc := @PutPICTData;
Count := PICThead;

(place all translation information in the dstBuf so that
it can be written into the picture header. This tells the
software how the image was converted from binary to
PICT for future reference, and rewrite back to binary)

WriteErr := FSWrite(RefNum, Count, @dstBuf);
IthePict is the picture handle with opcodes)

Count := SizeofthePict);
WriteErr := FSWrite(RefNum, Count, Ptr(theic);{

(write EOF opcode for PICT2 files)
TailBikill:= $00;
TailBlkt2] := $FF;

Count := PICTtail;
WriteErr: FSWrite(RefNum, Count, @Tai]Blk);

aWindoWA grafProcs := NIL;
(handle write errors elsewhere)

Writelmage := WriteErr;
END;(WriteImage I

Figure 9. A procedure to write PICT2-style files from a picture handle (thePict) and force
the required End Of Picture marker. The 512-byte header documents how the image was
created from the original binary (e.g. the conversion from the original 0-255 used to create the RGB
display). If additional information is required to document the picture, the resource fork (Fig. 5)
is used as the depository for the information.

7

RESULTS ing codes directly from the input stream (they are
currently generated from the GrafPort that dis-

A prototype application has been developed to plays the input stream). This should accelerate
convert image data into PICT2 format. While binary-to-picture conversion by a factor of 2 and
this application is still in its infancy, results in- eliminate the need to us, the GrafPort as an in-
dicate that there is a significant improvement in termediate buffer. In addition, new utilities will
microcomputer image-processing performance as include image export into the PNTG, PHCA,
a result of the conversion. Early benchmarks for EPS, and TIFF formats. These formats provide
a 512 x 512 SPOT image on a Macintosh II (with an export technique for quick image-processing
2 megabytes of memory and 3 bands open) sug- using video (TIFF) and page-layout software
gest that images may be displayed and redrawn (PNTG, PHCA). Furthermore, the Postscript com-
in fractions of a second. Comparable images typ- patibility (EPS) will provide a convenient route
ically require 4 minutes to load from binary and for exporting images into UNIX and other op-
are ill-suited for dynamic display in multiple erating systems that support Postscript but not
windows. Early results for data compression in- QuickDraw.
dicate that vector overlays may be compressed in
memory by a factor of 8 (from comparable MOSS
polygon files) and SPOT images (depending on LITERATURE CITED
scene diversity) by a factor of 2. Data compres-
sion for import and export indicates that images Adobe88 (1988) Adobe Illustrator, Adobe Sys-
may be saved in the PICT2 format at roughly tems Inc.
90% of their binary size (again depending on im- Cohen, M. A. and S. Grossberg (1983) "Abso-
age diversity). Preliminary testing of the soft- lute stability of global pattern formation and par-
ware illustrates that images may be displayed in allel memory storage by competitive neural net-
multiple overlapping windows with active verti- works," in IEEE Transactions on Systems, Man
cal and horizontal scrolling of RGB color. Fur- and Cybernetics, SMC-13(5):815-824.
thermore, images may be cut, copied, and pasted Digital Darkroom (1988) Silicon Beach Soft-
at variable zoom and resolution levels between ware.
windows and the scrapbook using standard "scrap Forsyth, R. and I. Rada (1986) Machine
management" and QuickDraw procedures. Learning: applications in expert systems and inf-

ormatioh retrieval. Chichester, England: Ellis

CONCLUSIONS Horwood Limited.
Holkenbrink, P. F. (1978) "Manual on Charac-

While the PICT2 format will not replace the teristics ofLandsat Computer-Compatible Tapes
binary structure for the strict import and export Produced by the EROS Data Center Digital Image
of image data, it accelerates greatly the speed Processing System,"Version 1.0, USGS 024-001-

and memory performance ofdigital image proces- 03116-7, Washington, D.C.
sing on certain hosts. In this study, data struc- Inside Macintosh (1985) Promotional Edition,
tures have been derived that may be used to proc- Apple Computer, Cupertino, Calif.
ess images and import or export image data in a Inside Macintosh (1987)Volume V, FinalAPDA

format compatible with other commercial soft- Draft, Apple Programmer's and Developer's As-
ware. Advantages of this approach include: sociation, APDA KMB1 5F, Apple Computer, Cu-

1) compatibility with most PostScript- and pertino, Calif.
QuickDraw-based software, McCleliand, J. L. and D. E. Rumelhart (1987)

2) very fast graphical processing, Parallel Distributed Processing, Vol 1: Founda-

3) flexible data compression, tions. Cambridge, Mass.: MIT Press.

4) flexible data structuring (dynamic size and Rumelhart, D. E. and D. Zipser (1985) "Fea-
memory allocation), ture discovery by competitive learning," in Cog-

5) no loss of information from original binary nitive Science, 9(75-112).
form, and SPOT Image (1983) 1983 U.S. SPOT Simula-

6) flexible resolution, hue, saturation, bright- tion Campaign Auxiliary Information Package,
ness, and bit-plane -pecifications. Washington, D.C.: SPOTIMAGE Corp.

Future efforts win include faster data conver- Winston, P. H. (1984) Artificial Intelligence,
s on into the PICT2 format by generating operat- 2nd Ed., Reading, Mass.: Addison Wesley.

8

APPENDIX A

QuickDraw Operating Codes (opeodes)
for converting binary image data into

PICT and PICT2 Data Files.

Source: Inside Macintosh (1987)

9

Table A. Data types.

Type Size

v1 opcode 1 byte
v2 opcode 2 bytes
integer 2 bytes
long integer 4 bytes
mode 2 bytes
point 4 bytes
0...255 1 byte
-128...127 1 byte (signed)
rect 8 bytes (top, left, bottom, right: integer)
poly 10+ bytes
region 10+ bytes
fixed-point number 4 bytes
pattern 8 bytes
rowBytes 2 bytes (always an even quantity)

Table B. PICT opcodes.

Data Size
Opcodei"2 Name Description (in bytes)

$0000 NOP nop 0
$0001 Clip clip region size
$0002 BkPat background pattern 8
$0003 TxFont text font (word) 2
$0004 TxFace text face (byte) 1
$0005 TxMode text mode (word) 2
$0006 SpExtra space extra (fixed point) 4
$0007 PnSize pen size (point) 4
$0008 PnMode pen mode (word) 2
$0009 PnPat pen pattern 8
$OOOA FillPat fill pattern 8
$OOOB OvSize oval size (point) 4
$000C Origin dh, dv (word) 4
$OOOD TxSize text size (word) 2
$OOOE FgColor foreground color (long) 4
$OOOF BkColor background color (long) 4

$0010 TxRatio numer (point), denom (point) 8
$0011 Version version (byte) 1
$0012 *BkPixPat color background pattern variable:

see Table C
$0013 *PnPixPat color pen pattern variable:

see Table C
$0014 *FillPixPat color fill pattern variable:

see Table C
$0015 *PnLocHFrac fractional pen position 2
$0016 *ChExtra extra for each character 2

$0017 *reserved for Apple use opcode3'4 0
$0018 *reserved for Apple use opcode 0
$0019 *reserved for Apple use opcode 0
$001A *RGBFgCol RGB foreColor variable:

see Table C
$001B *RGBBkCol RGB backColor variable:

see Table C

10

Table B (cont'd).
Data Size

Opcode Name Description (in bytes)

$ 001C *HiliteMode hilite mode flag 0
$001D *HilteColor RGB hilite color variable:

see Table C
$001E *DefHilite Use default hilite color 0
$001F *OpColor RGB Opcolor for arithmetic modes variable:

see Table C
$0020 Line pnLoc (point), newPt (point) 8
$0021 LineFrom newPt (point) 4
$0022 ShortLine pnLoc (point, dh, dv (-128...127) 6
$0023 ShortLineFrom dh, dv (-128...127) 2
$0024 *reserved for Apple use opcode 3 + 2 bytes data length + data 2+ data

length
$0025 *reserved for Apple use opcode + 2 bytes data length + data 2+ data

length
$0026 *reserved for Apple use opcode + 2 bytes data length + data 2+ data

length
$0027 *reserved for Apple use opcode + 2 bytes data length + data 2+ data

length
$0028 LongText txLoc (point), count (0..255), text 5 + text
$0029 DHText dh (0...255), count (0..255), text 2 + text
$002A DVText dv (0...255), count (0...255), text 2 + text
$002B DHDVText dh, dv (0...255), count (0.255), count, text 3 + text
$002C *reserved for Apple use opcode 3" + 2 bytes data length + data 2+ data

length
$002D *reserved for Apple use opcode + 2 bytes data length + data 2+ data

length
$002E *reserved for Apple use opcode + 2 bytes data length + data 2+ data

length
$002F *reserved for Apple use opcode + 2 bytes data length + data 2+ data

length

$0030 frameRect rect 8
$0031 paintRect rect 8
$0032 eraseRect rect 8
$0033 invertRect rect 8
$0034 fillRect rect 8
$0035 *reserved for Apple use opcode3' 4 + 8 bytes data 8
$0036 *reserved for Apple use opcode + 8 bytes data 8
$0037 *reserved for Apple use opcode + 8 bytes data 8
$0038 frameSameRect rect 0
$0039 paint SameRect rect 0
$003A eraseSameRect rect 0
$003B invertSameRect rect 0
$003C fillSameRect rect 0
$003D *reserved for Apple use opcode 3 4 0
$003E *reserved for Apple use opcode 0
$003F *reserved for Apple use opcode 0

$0040 frameRRect rec 8
$0041 paintRRect rect 5 8
$0042 erase RRect rect5 8
$0043 invertRRect rect5 8
$0044 fihiRRect rect 5 8
$0045 *reserved for Apple use opcode3 " + 8 bytes data 8
$0046 *reserved for Apple use opcode + 8 bytes data 8
$0047 *reserved for Apple use opcode + 8 bytes data 8

11

Table B (cont'd). PICT opcodes.
Data Size

Opcode Name Description (in bytes)

$0048 frameSameRRect rect 0
$0049 paintSameRRect rect 0
$004A eraseSameRRect rect 0
$004B invertSameRRect rect 0
$004C filSameRRect rect 0
$004D *reserved for Apple use opcode 3' 4 0
$004E *reserved for Apple use opcode 0
$004F *reserved for Apple use opcode 0

$0050 frameOval rect 8
$0051 paintOval rect 8
$0052 eraseOval rect 8
$0053 invertOval rect 8
$0054 finOval rect 8
$0055 *reserved for Apple use opcode3 '4 + 8 bytes data 8
$0056 *reserved for Apple use opcode + 8 bytes data 8
$0057 *reserved for Apple use opcode + 8 bytes data 8
$0058 frameSameOval rect 0
$0059 paintSameOval rect 0
$005A eraseSameOval rect 0
$005B invertSameOval rect 0
$005C fillSameOval rect 0
$005E *reserved for Apple use opcode 3' 4 0
$005F *reserved for Apple use opcode 0

$0060 frameArc rect, startAngle, arcAngle 12
$0061 paintArc rect, startAngle, arcAngle 12
$0062 eraseArc rect, startAngle, arcAngle 12
$0063 invertArc rect, startAngle, arcAngle 12
$0064 fiUArc rect, startAngle, arcAngle 12
$0065 *reserved for Apple use opcode 3,4+ 12 bytes data 12
$0066 *reserved for Apple use opcode + 12 bytes data 12
$0067 *reserved for Apple use opcode + 12 bytes data 12
$0068 frameSameArc rect 4
$0069 paintSameArc rect 4
$006B invertSameArc rect 4
$006C fillSaxneArc rect 4
$006D *reserved for Apple use opcode 3' 4 + 4 bytes data 4
$006E *reserved for Apple use opcode + 4 bytes data 4
$006F *reserved for Apple use opcode + 4 bytes data 4

$0070 framePoly poly polygon size
$0071 paintPoly poly polygon size
$0072 erasePoly poly polygon size
$0073 invertPoly poly polygon size
$0074 filPoly poly polygon size
$0075 *reserved for Apple use opcode 3

' + poly
$0076 *reserved for Apple use opcode + poly
$0077 *reserved for Apple use opcode word + poly
$0078 frameSamePoly (not yet implemented: same as 70, etc.) 0
$0079 paintSamePoly (not yet implemented) 0
$007A eraseSamePoly (not yet implemented) 0
$007B invertSamePoly (not yet implemented) 0
$007C fillSamePoly (not yet imrlemented) 0
$007D *reserved for Apple use opcode3 4 0
$007E *reserved for Apple use opcode 0
$007F *reserved for Apple use opcode 0

12

Table B (cont'd).
Data Size

Opcode Name Description (in bytes)

$0080 frameRgn rgn region size
$0081 paintRgn rgn region size
$0082 eraseRgn rgn region size
$0083 invertRgn rgn region size
$0084 fillRgn rgn region size
$0085 *reserved for Apple use opcode3'4 + rgn region size
$0086 *reserved for Apple use opcode + rgn region size
$0087 *reserved for Apple use opcode + rgn region size
$0088 frameSameRgn (not yet implemented - same as 80, etc.) 0
$0089 paintSameRgn (not yet implemented) 0
$008A eraseSameRgn (not yet implemented) 0
$008B invertSameRgn (not yet implemented) 0
$008C fillSameRgn (not yet imrlemented) 0
$008D *reserved for Apple use opcode3, 0
$008E *reserved for Apple use opcode 0
$008F *reserved for Apple use opcode 0

$0090 *BitsRect copybits, rect clipped6 variable8

$0091 *BitsRgn copybits, rgn clipped 6 variable8

$0092 *reserved for Apple use opcode 3?4+ 2 bytes data length + data 2+ data
length

$0093 *reserved for Apple use opcode + 2 bytes data length + data 2+ data
length

$0094 *reserved for Apple use opcode + 2 bytes data length + data 2+ data
length

$0095 *reserved for Apple use opcode + 2 bytes data length + data 2+ data
length

$0096 *reserved for Apple use opoode + 2 bytes data length + data 2+ data
length

$0097 *reserved for Apple use opcode word + 2 bytes data length + data 2+ data
length

$0098 *PackBitsRect packed copybits, rect clipped variable8

$0099 *PackBitsRgn packed copybits, rgn clipped variable8

$009A *reserved for Apple use opcode 14+ 2 bytes data length + data 2+ data
length

$009B *reserved for Apple use opcode + 2 bytes data length + data 2+ data
length

$009C *reserved for Apple use opcode + 2 bytes data length + data 2+ data
length

$009D *reserved for Apple use opcode + 2 bytes data length + data 2+ data
length

$009E *reserved for Apple use opcode + 2 bytes data length + data 2+ data
length

$009F *reserved for Apple use opcode + 2 bytes data length 4 data 2+ data
length

$00A0 ShortComment kind (word) 2
$00A1 LongComment kind (word) size (word), data 4+ data
$00A2 *reserved for Apple use opcode 3,4+ 2 bytes data length + data 2+ data

length

$00AF *reserved for Apple use opcode + 2 bytes data length + data 2+ data
length

13

Table B (cone'd). PICT opcodes.

Data Size
Opcode Name Description (in bytes)

$OOBO *'reserved for Apple use opcode3 ,4 0

$OOCF *reserved for Apple use opcode 0

$OODO *reserved for Apple use opcode + 4 bytes data length + data 4 + data
length

$OOFE *reserved for Apple use opcode + 4 bytes data length + data 4 + data
length

$0OFF opEndPic end of picture 2

$0100 *reserved for Apple use opcode3 ,4 + 2 bytes data7 2

$01FF *reserved for Apple use opcode + 2 bytes data7 2

$0200 *reserved for Apple use opcode + 4 bytes data7 4

$OBFF *reserved for Apple use opcode + 4 bytes data7 22

*0000 HeaderOp opcode 24

$0001 *reserved for Apple use opcode 3,4 4 bytes data 4

$7F00 *reserved for Apple use opcode + 254 bytes data 54

$7FFF *reserved for Apple use opcode + 254 bytes data254

$8000 *reserved for Apple use opcode 0

$8OFF *reserved for Apple use opcode 0
$81 00 *reserved for Apple use opcade + 4 bytes data length + data 4 + data

length
$FFFF *reserved for Apple use opcode + 4 bytes data length + data 4 + data

length

1. The opcode value has been extended to a word for version 2 pictures. Remember, opcode size = 1 byte
for version 1.

2. Because opcodes maust be word-aligned in version 2 pictures, a byte of 0 (zero) data is added after odd-
size data.

3. The size of reserved opcodes has been defined. They can occur only in version 2 pictures.
4. All unused opeodes are reserved for future Apple use and should not be used.
5. For opcodes $0040-$0044: rounded-corner rectangles use the setting of the OVSize point (refer to

opcode $OOOB).
6. For opcodes $0090 and $0091: data is unpacked. These opcodes can only be used for rowBytes less

than 8.
7. For opcodes $01 00-$7FFF: the amount of data for opeode $nnXX =2 * n bytes.
8. See Inside Macintosh (1985).

14

Table C. Data format of version 2 PICT opcodes.

Opcode Name Description

$0012 BkPixPat color background pattern
$0013 PnPxPat color pen pattern
$0014 FillPixPat color fill pattern

IF patType = ditherPat
THEN

patType: word; (pattern type = 2 }
patl Data: Pattern; I old pattern data I
RGB: RGBCoIor; (desired RGB for pattern I

ELSE
patType: word; (pattern type = 1)
patlData: Pattern; I old pattern data I
pixMap: { pixMap format shown below)
colorTable: I colorTable format shown below }
pixData: {pixData format shown below)

END;

$0015 PnLocHFrac fractional pen position

PnLocHFrac: word:

If PnLocHFrac < > 1/2, it is always put to the picture before
each text drawing operation.

$0016 ChExtra extra for each character

ChExtra: word:

After ChExtra changes, it is put to picture before next text
drawing operation.

$001A RGBFgCol RGB foreColor
$001B RGBBkCol RGB backColor
$001D HiliteColor RGB hilite color
$001F OpColor RGB OpColor for arithmetic modes

RGB: RGBColor; (desired RGB for foreground/background)

$001C IjiliteMode hilite mode flag

No data. This opcode is sent before a drawing operation that uses the
hilite mode.

$001 E DefHilite use default hilite color

No data. Set hilite to default (from low memory).

The next four opcodes ($0090, $0091, $0098, $0099) are modifications of version 1 opcodes.
The first word following the opcode is the rowBytes. If the high bit of the rowBytes is set,
then it is a pixMap containing multiple bits per pixel; if it is not set, it is a bitMap contain-
ing one bit per pixel. In general, the difference between version 1 and version 2 formats is
that the pixMap replaces the bitMap, a color table has been added, and pixData replaces
the bitData.

Note: opcodes $0090 and $0091 are used only for rowBytes less than 8.

15

L

Table C (cont'd). Data format of version 2 PICT opcodes.

Opcode Name Description

$0090 BitsRect copybits, rect clipped

pixMap I described in Table D }
colorTable: described in Table D I
srcRect: rect; source rectangle I
dstRect: rect; destination rectangle
mode: word; transfer mode (may include new transfer modes) }
pixData: described in Table D }

$0091 BitsRgn copybits, rgn clipped

pixMap: I described in Table D }
colorTable: I described in Table D I
srcRect: rect; I source rectangle)
dstRect: rect; (destination rectangle
mode: word; transfer mode (may include new transfer modes) }
maskRgn: rgn; I region for masking)
pixData: I described in Table D I

$0098 PackBitsRect packed copybits, rect clipped

pixMap: I described in Table D I
colorTable: I described in Table D }
srcRect: rect; source rectangle)
dstRect: rect; destination rectangle }
mode: word; transfer mode (may include new transfer modes) I
pixData: described in Table D)

$0099 PackBitsRgn packed copybits, rgn clipped

pixMap: (described in Table D I
colorTable: I described in Table D I
srcRect: rect; (source rectangle I
dstRect: rect; I destination rectangel I
mode: word; (transfer mode (may include new transfer modes) I
maskRgn: rgn; I region for masking)
pixData: (described in Table D I

16

Table D. Data types found within new PICT opcode listed in Table C.

Opcode Name Description

pixMap = baseAddr: long; unused = 0 1
rowBytes: word; I rowBytes w/high byte set }
Bounds: rect; (bounding rectangle I
version: word; I version number = 0 1
packType: word; (packing format = 0 1
packSize: long; (packed size = 0 J
hRes: fixed; horizontal resolution (default = $0048.0000) 1
vRes: fixed; I vertical resolution (default = $0048.0000) 1
pixelType: word; chunky format = 0 }
pixelsize: word; I no. of bits per pixel (1, 2, 4, 8) I
cmpCount: word; I no. of components in pixel = 1
cmpSize: word; I size of each component = pixelSize for chunky i
planeBytes: long; I offset to next plane = 0
pmTable: long; (color table = 0 1
pmReserved: long; f reserved = 0 }

END;

colorTable = ctSeed: long; I id number for color table = 0
ctFlags: word; I flags word = 0)
ctSize: word; (number of ctTable entries -1

ctSize + 1 color table entries
(each entry = pixel value, red, green, I
I blue: word I

END;

pixData: If rowBytes < 8 then data is upacked
data size = rowBytes* (bounds. bottom-bounds. top);

If rowBytes > = 8 then data is packed.
Image contains (bounds. bottom-bounds. top) packed scanlines.
Packed scanlines are produced by the packBits routine.
Each scanline consists of [byteCount [data].
If rowBytes > 250 then byteCount is a word, else it is a byte.

END;

17

